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Question from Session Two
Yesterday we used uniformly distributed random

variables to model uncertain demand

This implies identical probability of median as well
as extreme high and low outcomes. This is may
not be appropriate…

⇒ What alternative probability distributions should
we use to sample demand?
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Session three – Modeling Uncertainty
• Objectives:

– Generate random numbers from various
distributions (Normal, Lognormal, etc)

• So you can incorporate in your model as you wish

– Generate and understand random variables that
evolve through time (stochastic processes)

• Geometric Brownian Motion, Mean Reversion, S-
curve
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Open ESD70session3-1Part1.xls

(Two parts because RAND() calls and graphs
take long to compute and update for every

Data Table iteration…)

About random number generation
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About random number generation
• Generate normally distributed random numbers:

– Use NORMINV(RAND(), µ, σ) NORMINV stands for
“the inverse of the normal cumulative distribution”)

– µ is the mean
– σ is the standard deviation

• In cell B1 in “Sim” sheet, type in
“=NORMINV(RAND(), 5, 1)”

• Create the Data Table for 2,000 samples
• Press “command =“ or “F9”, see what happens
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Random numbers from triangular distribution

• Triangular distribution could work as an
approximation of other distribution (e.g.
normal, Weibull, and Beta)
– Faster computationally

• Try “=RAND()+RAND()” in the Data
Table output formula cell B1

• Press “command =“ or “F9”, see what
happens
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Random numbers from lognormal distribution

• A random variable X has a lognormal
distribution if its natural logarithm has a normal
distribution

• Using LOGINV(RAND(), ln_µ, ln_σ)
– ln_µ is the mean of ln(X)
– ln_σ is the standard deviation of ln(X)

• In the Data Table output formula cell B1, type
“=LOGINV(RAND(), 2, 0.3)”

• Press “command =“ or “F9”, see what happens
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Using @Risk
• Open “ESD70session3-1Part1_@Risk.xls”
• In cell B2, type: “=RiskNormal(5,1)”
• In cell B3, type: “=RiskTriang(0,1,2)”
• In cell B4, type: “=RiskLognorm(E7,G7)”
• Go to @Risk menu, use 2,000 iterations
• Click on “Start Simulation”
• Click on “Summary”, and browse the

distribution of interest
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Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…
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• We have just described the probability density
function (PDF) of random variable x, or f(x)

• We can now study the time function of
distribution of random variable x across time,
or f(x,t)

• That is a stochastic process, or in plain
English language:

TREND + UNCERTAINTY

From probability to stochastic processes
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Three stochastic models
• Geometric Brownian Motion

• Mean-reversion

• S-Curve
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Geometric Brownian Motion
• Brownian motion (also called random walk)

– The motion of a pollen in water
– A drunk walk in Boston Common
– S&P500 return

• Rate of change of the geometric mean is
Brownian, not the underlying observations
– Stock prices do not necessarily follow Brownian

motion, but their returns do!
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• This is the standard model for modeling stock
price behavior in finance theory, and lots of other
uncertainties

• Mathematic form for Geometric Brownian Motion:

SdzSdtdS !µ +=

where S is the stock price, µ is the annual return trend on
the stock, σ is the volatility of the stock price, and dz is the
basic Wiener process giving a “random shock” to µ

Brownian motion theory

trend uncertainty
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Open ESD70session3-1Part2.xls

Simulate a stock price
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Simulate a stock price
• Google’s common stock price as of 8/31/09

was $461.67 (see “GOOG” tab)
• Using regression analysis on historical price

data, we calculated monthly growth rate (drift)
of µ = 1.4% and volatility σ = 31.3%

• These two values are key inputs into any
forward-looking simulation models. We will be
using them repeatedly, so lets define their
names…
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Defining Excel variable names
1. Select cell with the historical mean value

(1.4%) and go to: “Insert” ⇒ “Name” ⇒
“Define”

• Formulas ⇒ Name Manager in Excel 2007

2. Enter field name “drift” and hit “OK”

3. Repeat the same for historical standard
deviation and call that variable “vol”
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Simulate a stock price (Cont)

December

November

=B2*(1+D2)October

=drift+vol*C2=NORMINV(RAND(),0,1)$461.67September

Expected Return +
random draw *

volatility

Random Draw from
standardized normal

distribution1

Stock
Price

Time

Complete the following table for Google stock in
tab “GOOG forecast”:

1) Standard normal distribution with mean 0 and standard deviation 1
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Simulating Google returns in Excel
1. In worksheet “GOOG forecast”, type

“=NORMINV(RAND(),0,1)” in cell C2, and drag down
to cell C13

2. Type “=drift+vol*C2” in cell D2, and drag down to
cell D13

3. Type “=B2*(1+D2)” in cell B3, and drag down to cell
B13

4. Create a “Line Chart” under “Insert” menu
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Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…
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Mean reversion
• Unlike Geometric Brownian Motion that

grows at the “drift” rate, some
processes have the tendency to
– Fluctuate around a mean
– The farther away from the mean, the higher

the probability of reversion to the mean
– The speed of mean reversion can be

measured by a parameter η
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Mean reversion theory
• Mean reversion has many applications

besides modeling interest rate behavior in
finance theory

• Mathematical form:

where r is the interest rate, η is the speed of mean
reversion, µ is the long-term mean, σ is the volatility,
and dz is the basic Wiener process

! 

dr ="(µ # r)dt +$dz
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• In finance, people usually use mean
reversion to model behavior of interest
rates and asset volatilities

• Suppose the Fed rate r = 4.25% today,
the speed of mean reversion η = 0.3,
the long-term mean µ = 7%, the
volatility σ = 1.5% per year

Simulating interest rate
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2010

2009

2008

=B2+D22007

=$H$2*($H$3-B2)+C2*$H$4=NORMINV(RAND(),0,1)4.25%2006

Realized returnRandom Draw from
standardized normal

distribution

Interest rateTime

Complete the following table for interest rate:

! 

dr ="(µ # r)dt +$dz

Simulating interest rate
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1. In worksheet “Interest Rates”, type
“=NORMINV(RAND(),0,1)” in cell C2, and drag down
to cell C12

2. Type “=$H$2*($H$3-B2)+C2*$H$4” in cell D2 to
represent the model, and drag down to cell D12

3. Type “=B2+D2” in cell B3, and drag down to cell B12.
NOTE: the two values are added since the model
expresses a change in return compared to initial
return, not a change in stock price as for the GBM
model

4. Create “Line Chart” under “Insert” menu

Interest rate forecast in Excel
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Give it a try!

Check with your neighbors…

Check the solution sheet…

Ask me questions…
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• Many interesting process follow the S-
curve pattern

Time

For example, demand for a new technology initially grows
slowly, then demand explodes exponentially and finally
decays as it approaches a natural saturation limit

S-curve
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• Overall form of S-curve

– M is upper bound on maximum value
– b determines how fast we go through the temporal

range to reach the upper bound
– a interacts with b, but translates the curve

horizontally
! 

y(x) =
M

1+ ae
("bx )

S-curve
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S-curve
Upper bound M = 4000

Curve sharpness b = 1.5

Horizontal position a = 199
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S-curve

Saturation part

Growing part
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Modeling S-curve deterministically
• Parameters:

– Demand at year 0
– The limit of demand (M), or demand at time ∞
– Sharpness parameter b

• Model:

– Translation parameter a can be approximated from demand
at year 0 and the upper bound M at ∞:

! 

a =
M

Demand(0)
"1

! 

D(t) =
M

1+ ae
("bt )



ESD.70J Engineering Economy Module - Session 3 31

Modeling S-curve dynamically
• We can estimate incorrectly the initial

demand, the limit of demand, and the
sharpness parameter, so all of these
are random variables

• The growth every year is subject to an
additional annual volatility
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S-curve example
• In tab “S-curve”

– Demand(0) = 80 (may differ ± 20%)

– Limit of demand M = 1600 (± 40%)

– Sharpness parameter b = 1 (± 40%)

– Annual volatility is 10%
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Give it a try!

Check how the model is built…

Ask me questions…
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Back to Big vs. small?
• We talked about the following models

today
– Normal, Triangular, Lognormal
– Geometric Brownian Motion
– Mean Reversion
– S-curve

• Which one is more appropriate for our
demand modeling problem? Why?
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Model calibration challenges
• Knowing the theoretical models is only a start.

Properly calibrating them is critical
• Otherwise – GIGO (Garbage In Garbage Out)
• In many cases, data is scarce for interesting

decision modeling problems
• It is good habit to study plausible sources of

data for your line of work
– So you have a model that is representative of

reality!
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Example
• We simulated the movement of Google stock

price using the expected monthly growth rate
(return) µ = 1.4% and volatility σ = 31.3%. Is it
reasonable?

• In the Google IPO of 2004, there was no
historical data to draw upon. How to model?

⇒ Solution - use comparable stock, like Yahoo,
to estimate expected drift and volatility
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Issues in modeling
• Do not trust the model – “all models are wrong, some

are useful”
– Highly complicated models are prone (if not doomed) to be

misleading
– The more inputs required, the more room for error
– Always check sensitivity of inputs through Sensitivity Analysis

• Dynamic models offer great insights, regardless of the
output data errors

• In some sense, models are useful to structure thinking,
analysis, and for communication
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Summary
• We have generated random numbers

from various distributions in Excel and
@Risk

• Explored random variables as functions
of time (stochastic processes)
– Geometric Brownian Motion
– Mean Reversion
– S-curve



ESD.70J Engineering Economy Module - Session 3 39

Next class…
The course has so far concentrated on ways
to model uncertainty

Modeling is passive. Managers have the
capacity to adapt to uncertainties proactively.
This capacity is called flexibility and
contingency planning

⇒ Next class we’ll finally explore ways to
extract additional value from uncertainty and
assess the value of flexibility!


